



## Rethinking Occupancy-Based Ventilation Controls

39th AIVC Conference 2018

#### Iain Walker and Brennan Less iswalker@lbl.gov





Traditionally:

- 1. Sense occupancy
- 2. Turn ventilation off (or low setting) if no occupancy

Assumes occupants (and their activities) are the only source

What if we account for other contaminants that are continuously emitted?

- VOCs (e.g., formaldehyde)
- Left over from occupant activities: moisture, odors, particles, etc.



## Method

Use simulation software (REGCAP) to calculate relative exposure compared to a continuously operating ventilation system (baseline).

Assumption #1: contaminants emitted continuously.

Assumption #2: contaminants emitted at half rate when unoccupied

Use a real-time control to optimize control strategies

Include infiltration – DOE "Zero energy ready" airtightness 1.5 – 3 ACH50

15 US climate zones

200 m<sup>2</sup>, three bedrooms, four occupants

Include operation of kitchen/bath exhaust and clothes dryer

Balanced & unbalanced fans- higher capacity to allow for recovery after occupants return







## **Occupancy patterns**

- 1<sup>st</sup> shift: unoccupied 08 17 hr. weekdays
- 1<sup>st</sup> extended: unoccupied 8 22 hr. weekdays + 2 two hour periods each weekend day
- 3<sup>rd</sup> shift (night shift): unoccupied 21 06 hr. weekdays



## **Smart Ventilation Control**

- Real time calculation of exposure and "dose" (24 hour moving average exposure) for ALL times
- Make a decision every 10 minutes to turn fan on or off
   Fan on if dose or exposure > 1
- During occupied time operate fan to meet target: maintain average relative exposure less than or equal to one
- Unoccupied: maintain average relative exposure less
  than or equal to five
  - To avoid acute exposure based on ratio of acute to chronic particle exposure levels.



## **"Traditional" Occupancy Ventilation Control**

IAQ Fan Sized to Standard (62.2-2016), Turned Off When Unoccupied





#### **"Traditional" Occupancy Ventilation Control**

IAQ Fan Sized to Standard (62.2-2016), Turned Off When Unoccupied



# Real time controller results- recovery nearly as long as "off"





# Real time controller results- recovery nearly as long as "off"





Table 1: Median values for annual average air exchange rate and relative exposure.

| Case                    | Fan Type | Unoccupied | Air Exchange | Relative Exposure |
|-------------------------|----------|------------|--------------|-------------------|
|                         |          | Emissions  | (ACH)        |                   |
| No IAQ fan              | None     | Full       | 0.102        | 4.959             |
| Continuous fan          | Exhaust  | Full       | 0.340        | 1.005             |
|                         | Balanced | Full       | 0.358        | 0.999             |
| Occupancy<br>Controlled | Exhaust  | Full       | 0.326        | 1.001             |
|                         | Exhaust  | Half       | 0.298        | 0.996             |
|                         | Balanced | Full       | 0.328        | 1.007             |



## **Results**



#### Why low savings?

1. Recovery period increases ventilation rate when occupants return home

2. In most locations, this shifts ventilation to colder times of day

3. Over-sized fan that is cycled on/off leads to increased mean airflow



## **Results**

- accounting for pollutants emitted during unoccupied periods drastically limited the reductions in average ventilation rate to between 4 and 12%, compared with the 24% reduction not accounting for non-occupied emissions.
- scenarios that assumed pollutant emissions were cut in half during unoccupied times had increased energy savings to an average of 11% for a typical occupancy pattern.



## **Future work**

• Lets figure out this ratio:

## occupied emissions

## total emissions

